这一句有客人可容易 (第5/5页)
唐伯虎点李逵提示您:看后求收藏(皮皮书吧pipi180.com),接着再看更方便。
该模型的期望输出分为四种(AtE\/Att\/cAtE\/ItE),可根据业务需求选择。对于for单个研究对象的反事实推断,模型的目标是计算每一个样本i的因果效应,即 = (t=1)? (t=0)。以3.3服药和康复的case为例,t = 是否服药,Y = 是否康复。我们知道,一个人是无法同时观测到吃药和不吃药对康复的影响,Scm也无法推测服药对某个用户的价值。而Rcm则会根据数据形态(即用户属性、历史表现以及混淆因子“年龄”等)预测实际未发生的行为将产生的结果,从而推断出ItE。同理可得出AtE、Att、cAtE。
因为业界很多时候关注的是单个treatment因子的价值,所以Rcm往往是业界的首选。
2.5.1 基本假设
Rcm存在如下3个基本假设[18]:
稳定单元干预值假设(Stable Unit treatment Value Assumption, SUtVA):任意单元的潜在结果都不会因为其他单元的干预发生改变而改变,且对于每个单元,其所接受的每种干预不存在不同的形式或版本,也不会导致不同的潜在结果。以吃药康复的例子解释这里的两层含义,其一是你吃不吃药不影响我是否康复;其二是每种干预是唯一的,吃药不存在吃很多、吃很少的情况,统一药量,要考虑药量就要设置不同的干预值(即此时干预变量不能只是0和1)