这一句有客人可容易 (第4/5页)
唐伯虎点李逵提示您:看后求收藏(皮皮书吧pipi180.com),接着再看更方便。
假设t=1表示服药,t=0表示未服药,Y=1表示发病的概率,Y=0表示未发病的概率。显然p ( Y = 1 i t = 1 ) = 0.78 < p ( Y = 1 i t = 0 ) = 0.83,这是因为没有考虑混淆变量“性别”的影响,出现了辛普森悖论。
如下图,通过后门调整,去除掉性别对服药的干扰。则最终 p(Y=1ido(x=1))=0.832 > p(Y=1ido(x=0))=0.781,说明服用此药物确实可以降低发病率。
后面调整的计算逻辑如下:
2.4.4 因果识别
当前Scm模型更多用于因果识别,这是因果推断伴生的研究课题。其目标是从一系列的因子里,找出各因子间的因果相关性并输出因果图,则后续可根据casual graph分析两两因子间的相互影响,揭示因子对结果的多层传递性影响。举个例子[14],我们研究影响产品销量的因素时,可能存在产品价格、产品属性、门店信息、市场竞争情况等因子需要考虑。我们可以构建多个类似下图的因果图模型,然后通过do算法实现干预,判断各因子间存在的因果关系,最终输出概率最大的因果图作为识别的结果[15][16]。本文主要关注因果推断,因果识别不做展开讨论,更多示例可参考相关文章[17]
2.5 潜在结果模型(Rcm)[11]
Rcm关注的是干预前后的期望变化,即2.2所述的treatment effect。该模型不考虑分析所有因子的因果性,只关注treatment和output之间的因果强弱,因此也不需要构建完整了因果图,而是假设treatment和output外的其他因子均为混淆因子,构建粗略的因果图,通过预测反事实的结果,并于观测对比来完成因果推断。